skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Peng, L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Modern climate projections lack adequate spatial and temporal resolution due to computational constraints. A consequence is inaccurate and imprecise predictions of critical processes such as storms. Hybrid methods that combine physics with machine learning (ML) have introduced a new generation of higher fidelity climate simulators that can sidestep Moore's Law by outsourcing compute-hungry, short, high-resolution simulations to ML emulators. However, this hybrid ML-physics simulation approach requires domain-specific treatment and has been inaccessible to ML experts because of lack of training data and relevant, easy-to-use workflows. We present ClimSim, the largest-ever dataset designed for hybrid ML-physics research. It comprises multi-scale climate simulations, developed by a consortium of climate scientists and ML researchers. It consists of 5.7 billion pairs of multivariate input and output vectors that isolate the influence of locally-nested, high-resolution, high-fidelity physics on a host climate simulator's macro-scale physical state.The dataset is global in coverage, spans multiple years at high sampling frequency, and is designed such that resulting emulators are compatible with downstream coupling into operational climate simulators. We implement a range of deterministic and stochastic regression baselines to highlight the ML challenges and their scoring. The data (https://huggingface.co/datasets/LEAP/ClimSim_high-res) and code (https://leap-stc.github.io/ClimSim) are released openly to support the development of hybrid ML-physics and high-fidelity climate simulations for the benefit of science and society. 
    more » « less
  2. null (Ed.)
  3. Application of massive multiple-input multipleoutput (MIMO) systems to frequency division duplex (FDD) is challenging mainly due to the considerable overhead required for downlink training and feedback. Channel extrapolation, i.e., estimating the channel response at the downlink frequency band based on measurements in the disjoint uplink band, is a promising solution to overcome this bottleneck. This paper presents measurement campaigns obtained by using a wideband (350 MHz) channel sounder at 3.5 GHz composed of a calibrated 64 element antenna array, in both an anechoic chamber and outdoor environment. The Space Alternating Generalized Expectation-Maximization (SAGE) algorithm was used to extract the parameters (amplitude, delay, and angular information) of the multipath components from the attained channel data within the “training” (uplink) band. The channel in the downlink band is then reconstructed based on these path parameters. The performance of the extrapolated channel is evaluated in terms of mean squared error (MSE) and reduction of beamforming gain (RBG) in comparison to the “ground truth”, i.e., the measured channel at the downlink frequency. We find strong sensitivity to calibration errors and model mismatch, and also find that performance depends on propagation conditions: LOS performs significantly better than NLOS. 
    more » « less
  4. Model equations used to either diagnose or prognose the concentration of heterogeneously nucleated ice crystals depend on combinations of cloud temperature, aerosol properties, and elapsed time of supersaturated-vapor or supercooled-liquid conditions. The validity of these equations has been questioned. Among many uncertain factors there is a concern that practical limitations on aerosol particle time of exposure to supercooled-liquid conditions, within ice nucleus counters, has biased the predictions of a diagnostic model equation. In response to this concern, this work analyzes airborne measurements of crystals made within the downwind glaciated portions of wave clouds. A streamline model is used to connect a measurement of aerosol concentration, made upwind of a cloud, to a downwind ice crystal (IC) concentration. Four parameters are derived for 80 streamlines: (1) minimum cloud temperature along the streamline, (2) aerosol particle concentration (diameter, D > 0.5 μm) measured within ascending air upwind of the cloud, (3) IC concentration measured in descending air downwind, and (4) the duration of water-saturated conditions along the streamline. The latter are between 38 and 507 s and the minimum temperatures are between −34 and −14 °C. Values of minimum temperature, D > 0.5 μm aerosol concentration, and IC concentration are fitted using the equation developed for ice nucleating particles (INPs) by by DeMott et al. (2010; D10). Overall, there is reasonable agreement among measured IC concentrations, INP concentrations derived using D10's fit equation, and IC concentrations derived by fitting the airborne measurements with the equation developed by D10. 
    more » « less
  5. Abstract The superτ-charm facility (STCF) is an electron–positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5 × 1035cm−2·s−1or higher. The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory — the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R&D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R&D and physics case studies. 
    more » « less